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Abstract

-

Techniques have been proposed in the past for various types of finite state machine (FSM)
decomposition that use the number of states or edges in the decomposed circuits as the
cost function to be optimized. These measures are not reflective of the true logic
complexity of the decomposed circuits. These methods have been mainly heuristic in
nature and offer limited guarantees as to the quality of the decomposition. In this paper
we present optimum and heuristic algorithms for the general decomposition of FSMs such
that the sum total of the number of product terms in the one-hot coded and logic minimized
submachines is minimum or minimal. This cost function is much more reflective of the area
of an optimally state-assigned and minimized submachine than the number of states/edges
in the submachine. Mr—muia&é‘_;he problem of optimum two-way FSM decomposition a5
one of symbolic-output partitioning and show that this is an easier problem than optimum
state assignment. We-describ® a procedure of constrained prime-implicant generation and
covering t-h-ef'?cprcscnts an optimum FSM decomposition algorithm. under the specified cost
Sunction. Exact procedures are not viable for large problem instances. We-gﬂ'c'a novel
iterative optimization strategy of symbolic-implicant expansion and reduction, modilicd from
two-level Boolean minimizers, thaf represents a heuristic algorithm based on our cxact
procedure. Reduction and expansion are performed on functions with symbolic, rather
than binary-valued outputs. We—prcscn? prcliminary experimental results M’fllustratc
both the efficacy of the proposed algorithms and the validity of the selected cost function,
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Abstract

Techniques have been proposed in the past for various types of finite
state achine (FSM) decomposition that use the number of states or
edges in the decomposed circuits as the cost function to be optimized.
These imeasures are not reflective of the true logic complexity of the de-
composed circuits. These methods have been mainly heuristic in nature
and ofler lunited guarantees as to the quality of the decomposition. In
this paper. we present optinnnn and heuristic algorithms for the geun-
eral decomposition of FSMs such that the sum folal of the number of
product terms i the ane-hot coded and logic minimized submachines is
minimwm or mimmal. This cost function 18 much more reflective of the
area of an optimally state-assigned and mininized submachine than the
nuimber of states/edges in the submmachine. We formulate the problem
of optinnu two-way FSM decomposition as one of symbolic-outpul par.
fitroning and show that this is an easier problem than optimuin state
assigiinent. We describe a procedure of constrained prime-implicant
generation and covering that represents an opfimum FSM decompo-
sthion algorithm. under the specified cost function. Exact procedures
are not viable for large problem instances. We give a novel iterative
optimization strategy of symbolic-tmplicant czpansion and reduction,
mxlified from two-level Boolean minimizers. thal represents a heuristic
algorithm based on our exact procedure. Reduction and expansion are
performed on functions with symbolic. rather than binary-valued out-
puts. We present prelintinary experintental results that illustrate both
the efficacy of the proposed aigoritlhms and the validity of the selected
cost function.

1 Introduction

The area and performance optimization of sequential circuits is recog-
nized as a key area. Work done in this area has involved the developient
of algorithus for state assigniment (e.g. (6], {8]) and decomposition of
finite state machines (e.g. (11}. [10]).

Cousiderable progress has been made in the sequential logic synthe-
sis areua in the recent past. Heuristic strategies for state assignment
targeting two-level and multi-level logic implementations that achieve
high-quality solutions have heen developed (e.g. [8]. [3]). State machine
factorization algorithims have been developed and their relationslips to
the state assigmmnent problem have been investigated in (4] [2].

lu this paper, we address the problem of the decomposition of sequen-
tial machines into sialler interacting submachines, so as to optimize
the area and performance of the resulting implementation. Previous
approaches (e.g. (6]. {4]) to finite state machine (FSM) decomposition
have used the nwmber of states and edges in the resulting submachines
as their cost function. Given that the logic implementation of an FSM is
derived rom its State Transition Graph (STG) specification after state
assigmnent and intensive logic optimization, this cost function does not
reflect the true complexity of the eventual logic-level implementation
andis. in fact, far from accurate. Previous approaches have been mainly
heuristic in nature and offer liniited guarantees as to the quality of the
final solution as well.

The contributions of the work presented here include:

1. A formulation of tie optinmm two-way decomposition problem as
one of symbolic oufpuf parfifroning, with an associated cost function
that is much closer to the final logic-level implementation than the
number of states/edges in the decomposed subinachines, namely,
the sum total of the number of product terms in ihe one-hot coded
and logic minymezed submachines. This cost function allows us to
predicf the complicated effects of logic minimization.

2. The development of an exacl solution to tite above problem via
a method of prinve imiplicant generation and constrained covering,
Exact methods for state assigniment have been proposed in (5], but
here we exploit the fact that the problemn of two-way FSM decom-
position is easier than that of staie assignment. In particular, we
present a polynomial-time algorithm to check for the validity of a

iven solution during prime implicant covering.
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3. The development of a sophisticated heuristic optimization st rategy
that is applicable 1o probieins of any size. We give a novel iterative
optimization strategy of symbolic implicant erpansion and reduc-
tion. modified from two-level Boolean minimizers. that represents
a heuristic algorithimm based on our exact procedure. Reduction
and expansion are performied on functions with symbolic. rather
than biuary-valued outputs. Many different expansion/reduction
heuristics have been implemented and evaluated under (his global
strategy.

We present basic definitions in Section 2. In Section 3. we forynmuiate
the decomposition problem as one of symbolic output partitioning and
give an exact procedure to solve it. \We give a theorem that proves
the correctness of the procedure. A heuristic expand-reduce procedure,
viable for large size problems. is presented in Section 1. Preliminary ex-
perimental results on area and performance oplimization. that illustrate
both the eflicacy of the proposed algoritlhis. as well as the validity of
our cosl function. are presented in Section 5.

2 Preliminaries

A finite state machine is represented by its State Transition Graph
(STG) or State Transition Table (STT). G(V. E. W(F}). where V' is
the set of vertices corresponding to the set of states S, where [I5]] is the
cardinality of the set of stales of the FSAI. an edge (e, v)) joins ¢, to
v, if there is a primary input that causes the FSM 1o evolve from state
v; to state r,. and W(L)is a set of labels attached to each edge, each
label carrying the information of the value of the input that caused the
transition and the values of the primary oulputs corresponding to tha
transition.

A partition 7 on the set S is a collection of disjoint sulyrets whose
sei. union i8 5. The disjoint subseis are called the blocks of 7. A factor
is Ng (> 1) sets of states and all fanout. edges [rom these sets of states
in the given machine. Each set of states is called an occurrence of the
factor. The maximmm number of states in any of the Ng occurrences
of the the factor is denoted by V.

Given a State Graph description of a desired terminal behavior. 1le
essence of the decoimposition problem is to find two or more machines
which. when interconnected in a prescribed way. will display that ter-
minal behavior. We refer to the individual wachines that make up the
overall realization as submachines. The machine that resulte from
the interconnection of the subimachines is called the decomposed ma-
chine. By the prototype machine. we mean the machine that was
nsed 10 define the terminal hebhavior to be realized.

3 Exact Procedure for 2-Way General De-
composition

General deconipositions can have various topologies. We are concerned
with the decomposition topology of Figure 1. where the original ma.
chine, M. has been decomposed into 2 subimachines, Vfy and M, inter.
connected in the prescribed way. The output logic for the deconpased
machine is distributed hetween the two submachines. unlike in [4] where
a logic block external to the submachines was required (o generate the
priniary oulputs.

Optimal state assignient of a machine corresponds to finding an op-
timal multiple general decomposition of the machine. By multiple we
mean thal more than 2 submachines may he produced. interacting in
much the sanie way as in Figure |. The problem of a 2-way deconposi-
tion is thus simpler than the state assignment problem. Our goal is 1o
provide exact or near-exact solutions to this problem.

3.1 Cost Function

The cost function for a general decomposition can vary depending on
the eventual targeted implementation. Here, we are concerned with two-
level implementations. The cost fuuction used allows us 1o decompose
the prototype ma hine into submachines such that the sum of the areas
of the two-level implementation of each submachine afier state Assign-
mient. is less than or close to the arca of the two-level implementation of
the prototype miachine after state assigninent. Tlhe area of the two-level
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Figure 1: General Decomposition Topology

implementation of each submachine is always less than the area of the
two-level implementation of the prototype machine. We also find that
the cost of the multi-level implementation of the decomposed machine
obtained using this cost function is almost always less than the cost of
the multi-level iniplementation of the prototype machine. This implies
that an optimal decomposition targeting a two-level implementation is
a good deconmposition for the multi-level case.

Consider the submachines in Figure [. Let the number of product
terms in the prototype machine, M. after one-hot coding and two-level
Boolean iinunization be £. Let the number of product terms in the
submachines My and M, after one-hot coding and two-level Boolean
minimization be Py and P;. respectively. We deem a decomposition to
be optitnum (optimal) if Py + P, is minimum (minimal). Note that in
the case where no good decomposition can be found Py + P, = P. In
this case. the hest decomposition correspouds to a topological partition
of the next state lines, which are produced by one-hot coding A (The
next-state lines in a one-hot coded machine cannot share logic).

Since the two-level area of each submachine obtained using this cost
function is always less than the two-level area of the prototype ma-
chine. the critical path of the decomposed machine in Figure 1 will be
smaller than the critical path of the prototvpe machine in the two-level
implementation. To optiniize the critical path of the decomposed ma-
chine, the complexity of the prototype machine should be uniformly
distributed between the submachines. A modified cost function of the
form Py + P; + a||P, — P;|| characterizes the optimality of the de.
composition with respect to timing also.

3.2 Decomposition, Factorization and Partitionin

We forinulate the optimum decomposition problem in the sequel. We
are given the initial State Transition Graph (STG) of M. Assume M
has .\ states, s;. .. sy. We construct a function L as follows: The
present-state {PS) field in the STG is replaced by an N-valued variable.
The next-state {NS) field in M is split into {we sviubolic variables, i.e.
sy is split into sywbolic outputs say and sb,. s;3 is split into symbolic
ontputs sap aud sby and so on. The primary input (Pl} and output
{PO) fields are untouched. An example transformation is shown below:

i sl s210 — 11 100 sa?2 sb2 10
00 st s301 — 00100 sa3 sb3 0!
01s2 5211 — 01 010 sa2 sb2 11

11«2 300 — 11 010 b3 563 10
Counsider the functions Ly and L with Pl and PS fields that are the
same as L. Ly has the first NS sub-field, corresponding to the sa, and
the primary outputs. L has the second NS sub-field corresponding Lo
the sb,. L, (left) and L; for our example are shown below:

11 100 sa2 10 11 100 b2

00 100 a3 01 00 100 sb3
01010 sa2 11 01 010 sb2

11010 3a3 00 11010 563

Ly and Lz are topological partitions of the function L (which cor-
responds to the original STG). but they are also State Graphs of de-
composed submachines. which together realize the behavior of M. To
elaborale on this. we need to look at possible encodings of the sa; and
ab,. Obviously. the codes for all the 8; have to be distinct. The codes
for aa;, and sa; can he the same if and only if the codes for sb, and sb,
are different.

Assunie a one-hot coding for the symbolic output of Ly (L), with
the extra degree of freedom that some of the sa; (sb;) can have the

same cade (Note that Lhe present-siate field has heen replaced by a
multiple-valued variable and has not been split as the next-state fiekl
has). That is. either the codes for soy and su; are the same or their
bitwise intersection is all zeros. Let a one-hot code for L, (13) produce
Py (P;) product terms. Py can be changed only by making some of
the sa; the sane, since a one-lot output coding is the worst case of
no sharing between the eventual binary-valued outputs. 1If afl the sa,
are coded with the sae code, then we have juerely the POs to realize
and minimum cardinality of an encoded L, but the sb, have all to he
different. This will imply that P, + P; > P. If one coded all the &b,
to be the same. then La is not required at all (/2 = 0). but all the su,
have to be coded differently and hence P, = P.

Thus, the problem is to decide which of sa, can be coded the same
under a one-hot code (implying that the corresponding sb,s are coded
differently under a one-hot code). 80 as to produce a minimum P, + P;.
This is identical to identifying two parfstions [6] in the original machine
so that the one-hot coded decomposed machine corresponding to these
partitions satisfies the cost function. When (he subgraph associated
with the states in one of the blocks of a partition has similar func-
tionality to the subgraph associated with another block of states in the
partition, this is exactly the sawe as identify ing the best factor [1] in the
original inachine across states sy. .. sx, such that performing a one-hot
codling on the faclored and factoring machines separately using differ-
ent fields. produces a minimum cumulative munber of product terins.,
If sa; is the same as sa;, it means that s; and s; are botl states in the
same occurrence of the extracted factor. If sb; is the <ame as sh;, it
means that s; and s; are (1) unselected states not it the factor or (2)
correspondence states in different occurrences of the factor.

M one wishes to constrain the decomposition 1o extracl [actors with a
maximum of N states in any occurrence of the factor. it implies that a
maximum of Vg sa, can be given the same code. Il we require a factor
with at least Ng occurrences it meaus that there have 1o exist at least
Ng groups of sa; such that the sa, in eaclt group have the sane code.

3.3 Prime Implicant Generation and Covering

To solve an output encoding problem. we have to modify the prime im-
plicant generation and covering strategies basic to Boolean minimiza-
tion. We have a simipler (and <lightly 3iﬂ'¢>r('ul) problent hiere from the
classical output encoding problem. however. since we have assuned a
one-hot coding and the only degree of freedom is in giving the same
code to the symbolic outputs.

We have the functions Ly and L, which have both binarv-valued and
a multiple-valued input. a symbolic output and binary-valued ontputs
(in the case of Ly). We generate generalized prisne implicants (G1s) for
Ly and L, wuch as in the Quine-McCluskey procedure with additional
tags corresponding to the symbolic output. liitially. all minterms have
tags correspouding to the symbolic output they assert. I a minterm
that, asserts a syiholic output say. merges with a minterm asserting
the symbolic oulput sa;, the resulting cute has Loth tags sy and sa;.
A cube cancels another cube if and only if their tags are identical, their
multiple-valued input parts are identical or the multiple-valued jnput
part of the larger cube contains a one in all positions. and. the binary-
valued input part of the larger cube covers the binary-valued input
part of the smaller cube. Binary-valued outputs are treated the same
as in the Quine-McCluskey procedure. When no larger cube can be
genierated, we have the set of all GPls.

Given a set of GPls for Ly and L; one has to perforii the selection
of a cover such that Py + P is mininmm. The definition of a cover is
different from classical minimization. since we have Lhe constraint that
all the s, have to encoded differentiy. A cover has to contain all the
minterms in Ly (or Lz). T addition. given a set of GPIs for Ly. nawely.
Gy and a set of GPls G for L. we have to clieck 10 ser il we can code
the sa;s and sb,s such that all the s,s have different codes and that no
GPI has a multiple-valued joput part (hat violates the encocleability
constraints. Then, we can construct two submachines M, and ;.
which when oune-hot coded would produce a cover cardinality of |(+y]
and [(73[. respectively. The minimum coveriug problem corresponds to
finding a minimum |G} + |G,l. As mentioned earlier. trade-offs will
exisl,

It remains 1o clearly define how the constraint on distinct codes for
the s, affects the selection of (7 and G;. For this we need to inspect
the symbolic tags of eacl of the implicants in G, and G,. as well as
their multiple-valued input paris. We can state tie following:

Lo If a pritve implicant p € Gy, has & tag containing sa,. sa;. sa,,.

then it implies that s, sa;. sa,, have been given the same code.

2. Iif a prime implicant p € Ga, has a tag containing sb.. sb;. sb,,.

then it implies that sby, sb;, sb., have heen given the same code.

3. If the multiple-valued input part of a prime implicant p € G,. G,

har a 0 in the position corresponding to s« and ls in positions
correspotcling Lo &, s,,. then it implies that either the code for
sag is different from the codes for both sa; and ana,, or that the
code for sb, is different {rom the codes for doth sb; and sb,,.




3.4 Algorithm for Encodeability Check
Given the 5)0\9 relations. we liave to check to see if all the s, can have
distinet codes for some selection of GPIs. G, and G,. If so. the selection
of ¢+ aud (5 is valid. Else. the selection is invalid. The check can be
accomplished in polynomial tiive. via the algoritlin described beiow.
1. Construct a graph where each node is a state s, aud there is an
edge with label o from s, to s, if they co-exist in the tag of some
GPLin ). Similarly, there is an edge with label b from s, o s, if
they co-exist in the tag of some GP1 in (.
2. I any s,. 5, pair has edges with both labels a and b, the selection
is invalid. exit. We call this constraint the uniqueness constraint.
3. Since we attempt to identify partitions [6] in the prototype machine,
we impose a transitivity constraint on the graph constructed in
steps | and 2 above. This inplies that if sa, and sa, have an edge
with label o hetween them and sa, and sap have an edge with
label « between them. then sa, and sap must also have au edge
with label a between them. We define a cligne as a subgraph such
that each pair of constituent nodes is connected by edges with the
same label. Thus. the constraint graph is composed of a sel of
cliques satislying the following properties if the selection of GPls
does not violate step 2 ahove:
o All the edges in a particular clique can have only one type of
tabel. Thus. a clique can be identilied with a label.

e Two cligines with the same label cannot have a node in com-
nion unless both the cliques are contained in a single large
clique.

e Two cliques with a different label can have. at the most, one
node i common. Thus, any two cliques can have, at the most.
one node in conunon.

1. Once a graph that satisfies the encodeability constraints imposed by
the out put part of the GPls is constructed. we check for violations of
constraints iniposed by the multiple-valued input part of the GPls.
Trivial input constraiuts are tliose with a 1 in all the positions of the
multiple-valued input part or those with only one 1 in the multiple-
valued input part {because s, cannot have Llie same code as s, for
i #£ j by virtue of steps 1 and 2). A selection of GPls violates
an input constraimt if and only 1f there exists a multiple-valued
input part in one of the selected GPls and a pair of cliques in the
constraint graph such that the following conditions are satisfied:

o The intersection of (he two cliques is non-null.

e Tle intersection of the two cliques corresponds to an s, such
that the position associated with that s, in the multiple-valued
input part is a zero.

o There is at least one s, in rach of the two cliques such that the
position associated with that s; in the multiple-valued input
part is a one.

5. I o GPLexists such that its multiple-valued input part violates the
constraints for any pair of cliques. the cover is deemed encodeable.

3.5 Correctness of the Exact Algorithm
Lemma 3.1 The steps of the encodeability check algorithm arve neces-
sarg and sufficient to ensure that the functionality of the decomposed
machine 1s tdentical lo that of the prototype machine.
Proof: Neressity: The necessity of checking for the constraints in the
algorithm follows from the descriplion of the constraints in the previous
sections,

Sufficrency: 1t can be shown that the functionality of the prototype
machine s maimtained 1l the <atisfaction of the above-mentioned con-
straints is verified. Hence, no other constraints need to be checked for.

[ ]

Lemma 3.2 A munmum cardinality encodeable solution can be made
up entirely of GPIs.

Proof: Assume that we have a minimum cardinality solution with a
cube ¢} that is not a GPL. We know that there exists a GP{ covering ¢,
that has the sane tag as ¢y, that its multiple-valued input part is either
the <ame as that of ¢{ or has a | in all its posilions, that its binary-
input part covers the binary-input part of ¢y and that its binary-oui put
pait covers the binary-output of ¢;. Thus, replacing ¢y by the GPI
does not change the functionality. the cardinality or the encodeability
of the solution. Hence. a mininwim cardinality solution can be made up
entirely of (iPla. [}

Theorem 3.3 The sclection of a minimum cardinality encodeable cover
for Ly and L3 from the GPls represents an cract solution to the decom-
position problem under the cost function being ward.

Proof: The proof follows from Lenunas 3.1 and 3.2 [ )

Thus. we have an ezact algorithmn for solving the decomposition prob-
lem for the chosen coat-function. This algorithm can be extended to the
problem of decomposition into muitiple commponent machines. The rea-
sons that this exact algorithim may not be viable for a given problem are
that the number of GPIs may be too large and/or the covering prol>-
len may not be solvable in reasonable titme. Therefore, we require a
lieuristic procedure to solve the problem.

4 Heuristic Procedure for 2-Way General
Decomposition

The basic iterative stralegy that has been used successfully for the two-
level Boolean minimization problem appears promising for 2-way gen-
eral decomposition also. The encodeahility requirements for GGy and G5
are defined in the same manner as for the exact procedure. But. instead
of enumerating all the GPls, we begin with a set of GPls for Ly and
L, and attempt 1o reduce their count. while maintaining the validity
of the GP1 covers. We can perform operations sinilar to the rrduce
and erpand operations of MINI [7] and ESPRESSO (1.9] in an effort (o
minimize the cover cardinalities.

The three basic steps in our iterative loop are given below in the order
in which (hey are carried out:

e Symbolic-teduce

e Symbolic-expand

e Minimize covers and reniove input constraints
The cost function that we use for the iterative procedure is the sane as
that used for the exact algorithm. namely. the sum of the cardinalities
of the minimized one-liot coded subtachines. The ateps in this loop
are repeated until the cost of the solution. given by this cost function,
remaing unchanged afier a pass through the ficp.

In the symbolic-reduce and syimbolic-expand steps, we attempt to
modify the symbolic outpul tags of the GPIs that currently make up the
covers (vy and (7 so that the possibility of obtaining a cover at the end
of the mininize step, with a lower cardinality than the cardinality of (e
cover at the beginning of the current pass of the loop. is increased. The
symbolic-reduce and symbolic.expand expand steps are analogous to the
reduce and expand steps. respectively, in iterative two-level Boolean
minimization.  Unlike in two-level Boolean minimization, we do nat
check that the cost of the decomposition does not increase during the
syntholic-reduce aud symbolic-expand steps. On the other hand. the
symbolic-reduce and symbolic-expand steps are carried out based on
intelligent heuristics that do usunally lead to a reduction in tle cost
aficr every pass through the loop. Even so. we maintain a copy of the
best solution oblained up to the enrrent point. The solution of the
iterative procedure is the best solution obtamed up to the point when
the solution enters a local minimum that the iterative procedure cannot
climb out of. The steps of the basic iterative loop are explained below.

In the minimization step. which follows the symbolic-expand. a two-
level minimization of both the covers. (vy and G, is carried out. This
step incorporates all the cnbe-merging that becomes possible ax a result
of the svimbolic-expand. We call the cover produced as a result of the
minimization the ever-mmimizcd cover because the minimization is car-
ted williout taking into account violations of the inpnt constramnts, and
tmay therefore not %u» encodeable. We unravel the inultiple-valued inpnt
parts of the cubes to the mintmum extent necessary to make the over.
mininmized cover encodeable. Whenever an iuput constraint siolation
is detected. the cardinality of the cover has to be increased Iy one 1o
remove it. The procedure for detecting the input constraint viofations
and removing them is speeded up <ignificantly by the use of intelhgent
pruning technigies that greatly reduce the search space.

The goal of the symbolic-expand procedure is 10 increase the size
of the output tags of the GPls in each cover till some form of prunality
is achieved. We consider the cover to be prime when no syihol can be
added to the output 1ag of any GPY without viclating the umqueness
constraint. The alomic operation in the expansion procedure jnseris
two states in the same output tag of a GPL checking while domg <o,
that the unigueness constrainl is not violated. ‘This atomic step can
have two major effects:

o It makes new cube merges possible.

® 1t can result in additional input constraint violations,
Symbolic-expand is order dependent. T'he ordering heuristic attempts
to aximize the occurrence of the first eflect and minumize that of the
secotul.

The symbolic-reduce operation transforins the priine cover into a
non-prime cover. ‘This operation is essential to the iterative process for
mos ing ont of the local minimmn that it may have entered following the
symbolic.expand and mininiization steps. In converting a prime cover
to a non-prinie cover. the basic operation used by symbolic-reduce is 10
retmove a state from the symbolic outpnt tags that it i contaned in.
when the tags contain more than one state in them, while maintaining
funetionality. ‘The states selected for renioval are those whose insertion
in the outpul tage of GPls during the symbolic-expand generaterd new
tnput constraints. Because the input conelraiuts are generated due to
non-null intergections hetween cliques with different lahels, we en<nre
that after the symbolic-reduce, the intersection between any pair of
chiques i mll. Such a cover is =aid to be marimally reduced. This
formulation of the symibolic-reduce operation is order independent.

The ordering of stale pairs at the beginning of the symbolic-expand.
which follows the symbolic-reduce operation. uses knowledge of the ex-
istence of cliques that remained aflter the eymbolic.reduce. The new or-
dering attelipts to explore a different direction for the sy mbolic-expand
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planet | 33/7 | 13713 | 19711725 | 3560/ 1+¢6/5336 | I8J61/-17.0

sIa X3 [ 13/13 37375 T746/616/T862 | a57 3715

=T 50/7 ] 35/14 | 33729767 | 1453373135/ 7007 | _ 20753728

~ud | 42 [10/10 57479 10507792/ 1842 | 617+1/31.%

smalll | 5/3] /9 5725 259/113/3:2 | 40/14/13.3
Thr [T [ 19/T1 | 97/6/15 [ 3996/1036/5030

5/75/-20.2 |

Wk 1672 | 10/11 573]% 5/ 17507015 |

' Averaged over examples with area < 1500.
Whenever applicable, the first number in a box corresponds to
submachine 1, the second to submachine 2 and the third is the

overall number for the decomposed machine.

Table |: Statistics of the Encoded Decomposed Machines

Ex. Submach. 1' | Submach. 2T | Overall Area’
doulile 073 0.30 0.93
exl 036 0.48 0.95
ex? 0.64 0.3T 0.36
<1 08T 0.14 0.95 |
plane( 0.67 0.30° 0.9
s]a 057 0.21 LUNE|
scud 03T [LRE: [
scl 0.52 0.51 103
sty 0.17 0.19 0.90 |
thK .38 0.17 0.

' Area normalized w.rt. multi-level area of the prototype-machine
The misll-wolfe pipeline was used to compute the multi-level areas

Table 2: Comparision of the Multi-level Areas

that could lead to a better solution than the solution from the previous
pass through the loop.

5 Results

e have inpletnented the heuristic procedure for optimal 2-way general
decomposition in a program called h-decom. Tlhe input to h-decom
is a KiSS-style [R] State Table description of the prototype machine.
As output, h-decom can produce either a fully encoded decomposed
miachine or a decomposed machine in which the PS inputs to the sub-
machines and their NS outputs are symbolic. The efficacy of the de-
composition can be based on a couparison of the following criteria:

o The areas of the two-level (multi-level) implementation of the en-
coded suhmachines and of the two-level (multi-level) implementa-
tion of the encoded prototy pe machine.

o The areas of 1he two-level implementation of the encoded subma-
chines and of a vertically partitioned two-level implementation of
the encoded prototype machine.

o Tle areas of the (wo-level {multi-level) implementation of the larger
of the two encoded submachines and of the two-level Smulli-level)
implenentation of the eucaded prototype machine. The two-level
area of the larger of thie two submachines is an indicator of the
critical path of the decomposed machine.

o The overall cardinalities of the two-ievel cover of the encoded and
miniinized decomposed subimachines and of the two-level cover of
the enccued and minimized prototype machine.

The total number of inputs and outputs in each encoded subma-
chine and in the encoded prototype machine.

The heuristic algorithin in h-decom was tested on a number of bench-
mark examples. The statistics of the examples are available in the
public domain. A KiSS-style encoding strategy was used on the sub-
machines and the prototype machines. It can be observed from Table 1
that h-decom is successfut in finding good 2-way general decomposi-
tions. It should be noted that the two-level area of each submachine is
always substantially less than that of the prototype machine, implying
that the critrcal path of the decamposed cireuif is always less than that
Jor the profotype circutt. 1t appears that the primmary interest in using
decomposition tools in industry stems from a need to improve the per-
formance of FSM controliers, which often dictate the required duration
of the system clock.

The total two-level area of the decomposed machine is usually less
than that of the prototype machine. Since the two submachines have
colnon inputsesome extra rouling area is required, over and above
the PLA area. However, this extra area is small in comparison to the
PLA areas and does not offset the the area gain via decomposition. As

can be seen from Table |, the nuinber of inputs for both submachines
need not be equal. A submachine may be independent of some of the
primary inputs and present state lines.

It is apparent from the Lopology of Figure | thal we do not add extra
levels of logic to the network. Thus. the reduction in area is as a result
of the saie causes as in the vertical partitioning of PLAs. In general. it
is not necessary that a good vertical partition should exist for a PLA.
Our miethod of decomposition eusures Lhat a good vertical partition does
exist, which imiplies that the performance of the FSM can be improved
withoit compromising the area.

We also report the muiti-level areas for the large examples. for which
a two-level implementation may not be eflicient. in Table 2. It can
be seeu that the multi-level area of the decomposed machine is almost
always smaller than that of the prototype machine. even though our
decomposition strategy is not geared specifically toward decomposition
for optimizing multi-level area. To obtain the multi-level areas. decon-
positions targeling optimnal performance were used as starting points.
The results imply that a good decomposition targeting two-level area is
usually a good decomposition for the umwlti-level case.

These results are significantly better than those obtained via [actor-
ization {4].

6 Conclusions

We have proposed cxact and heuristic algoritluns for optimum and op-
timal 2-way general decomnposition of finite state machines, ‘I'hese al-
gorithims are based on a cost function that is more reflective of the
cost of the logic-level implementation of the decontposed machine than
the cost function used by previous approaches to the decomposition

roblem. We have inuplemented the heuristic algorithi in the program

-decom. Good decompositions were obtained using h-decom for a
large number ol benchmark examples.
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